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REFLECTIONS ON LOGIC & PROBABILITY 

IN THE CONTEXT OF CONDITIONALS 
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Abstract. This paper discusses various controversies surrounding the meaning and use of 
such conditionals as "A given B" or "If B then A" including that such Boolean fractions 1) can 
non-trivially carry the standard conditional probability, 2) are truth functional but with three 
rather than two truth values, 3) are logically and probabilistically non-monotonic, 4) can be 
combined with operations that extend the standard Boolean operations, and 5) allow defini- 
tions that extend Boolean deduction but do not serve as deductions themselves thereby avoid- 
ing the so-called paradoxes identified by E. Adams. A new theory of deduction with uncertain 
conditionals is defined in terms of the new operations on conditionals by extending the familiar 
equations that define deduction between Boolean propositions. This leads to several plausible 
forms of deduction between conditionals. These different deductive relations on conditionals 
give rise to different sets of implications. Methods to determine the implications of one or 
more conditionals with respect to the various different deductive relations are described. Three 
examples of deduction with uncertain conditionals are extensively examined and solved. An 
example about an absent-minded coffee drinker contains two so-called subjunctive or counter- 
factual conditionals, which pose no additional difficulty. The issue of practical computation 
with conditionals is addressed and the use of information entropy to cut through complexity is 
discussed and illustrated. Lastly there is the question of how much confidence can be attached 
to a probability distribution having maximum entropy. In this regard the results of E. Jaynes 
concerning the concentration of distributions at maximum entropy are described along with 
two other theoretical approaches to this problem. 

1. Introduction. Thirty-five years ago the theories of logic and of probability were conspicu- 
ously unfinished, missing a division operation to represent conditional statements. Even today 
many people still reduce all conditional statements such as "if B then A" to the unconditioned 
(or universally conditioned) statement "A or not B", the so-called "material conditional", even 
though it has long been recognized that the material conditional is of no use in estimating the 
probability of A in the context of the truth of B. The latter probability is the well-known con- 
ditional probability of A given B, the ratio of the probability of both A and B to the probability 
of B. The conditional probability is never greater than, and is generally much less than, the 
probability that A is true or B is false. Only when B is certain or when A is certain given the 
truth of B do the two expressions yield essentially the same result. Even when B is false, they 
differ since the ratio is undefined while the material conditional has probability 1. This has all 
been quantified for instance in [Cal87]. Yet for purposes of doing 2-valued logic, the material 
conditional works just fine. Mathematicians have long proved their theorems of the form "if B 
then A" by proving that in all cases either A is true or B is false. 
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However when B is uncertain or when A is uncertain given the truth of B, the material condi- 
tional is not an appropriate Boolean proposition to represent the conditional statement "if B 
then A". Nor is there any other Boolean proposition that can serve the purpose of both logic 
and probability as early shown by D. Lewis [Lew75]. This non-existence is reminiscent of 
results throughout the history of mathematics that preceded the invention of new numbers 
needed to satisfy some relationships that naturally arose. The irrational numbers were needed 
to represent the length of the hypotenuse of a square in terms of the length of a side of that 

square; complex numbers were invented to solve polynomial equations such as x + 1 = 0 and 
integer fractions were invented to have numbers that could solve equations like 3 x = 20. In 
each case, mathematicians didn't stop with the declaration that there were no such numbers in 
the existing system; they instead invented new numbers that included the old ones but also 
solved the desired equations. The same thing has worked in the case of events and proposi- 
tions [Cal87, Cal94] and the result is no less profound. The more surprising thing is that it has 
taken so long for the development to occur in the case of events and propositions. Apart from 
Boole himself, such a system of ordered pairs was envisioned by a few researchers including 
G. Schay [Sch68] and Z. Domotor Dom69], but these developments didn't go far enough in the 
right direction before getting bogged down. It is now clear, however, that a system of ordered 
pairs of probabilistic events or of logical propositions can be defined to represent conditional 
statements, avoid the triviality results of Lewis [Lew75], and be assigned the standard condi- 
tional probability. 

These operations, on the ordered pairs of events or propositions (A|B), "A given B", have been 
extensively analyzed and motivated in [Cal87, Cal94, Cal02]. Using ' to denote "not" and jux- 
taposition to denote "and" these operations on conditionals are: 

a) (A|B)' = (A | B). 

That is, "not (A given B)" is equivalent to "(not A) given B". 

b) (A|B) or (C|D) = ((AB or CD) | (B or D)) 

The right hand side is "given either conditional is applicable, at least one is true". 

c) (A|B) and (C|D) - [ABD* or ABCD or B'CD] | (B or D) 

The right hand side is "given either conditional is applicable, at least one is true while the other 
is not false". It can be rewritten as [AB(CD or D') or CD(AB or B') | B or D)]. 

d) (A|B)|(C|D) = (A | (B)(C|D)) 

The right hand side is "given B and (C|D) are not false, A is true." 

By writing B as a conditional (B | H) with the universe H as condition the conjunction 
(B)(C|D) in d) reduces to B(C V D') using operation c). 

This system of "Boolean fractions" (<$ 158) includes the original events or propositions 63 as a 
subsystem and also satisfies the essential needs of both logic and conditional probability. Two 
conditionals (A|B) and (C|D) are equivalent (=) if and only if B=D and AB = CD. As with the 
past extensions of existing number systems, some properties no longer hold in the new system. 
For instance, the new system is not wholly distributive as are Boolean propositions. 

As with any new system of numbers there has been quite a lot of resistance to this new algebra 
of conditionals. Some researchers (see [Goo91 A, Hai96]), recognizing the virtue of a system 
of ordered pairs of events to represent conditional events, have nevertheless disputed the 
choice of extended operations on those ordered pairs.  However, the operations for "or" and 
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"and" in [Cal87] were independent rediscoveries of the two so-called "quasi" operations for 
"or" and "and" early employed by E. Adams [Ada66, Ada86], a pioneer researcher of condi- 
tionals writing in the philosophical literature. Adams calls these operations "quasi" merely 
because they are not "monotonic". That is, combining two conditionals with "and" does not 
always result in a new conditional that implies each of the component conditionals. Nor does 
combining two conditionals with "or" always result in a conditional that is implied by each of 
the component conditionals. This seems rather counter intuitive when considered in the 
abstract because we are all so imbued with equal-condition thinking. But when two condition- 
als with different conditions are combined as in operations b) or c), the result is a conditional 
whose condition is the disjunction ("or") of the two original conditions. By expanding the con- 
text in this way probabilities have more freedom to change up or down. Deduction is also 
much more complicated when dealing with conditionals with different conditions, but now a 
successful extension of Boolean deduction for uncertain conditionals has been developed 
[Cal90, Cal91,Cal02]. 

Another issue that arises with conditionals is their truth functionality. Are conditionals "true" 
or "false" like ordinary propositions or events? Even the ancient Greeks were troubled by this 
question. For some reason Adams seems to take the attitude [Ada98, p.65, footnote] that 
"inapplicable" is not really a 3rd truth-value that can be assigned to a conditional. On the other 
hand, B. De Finetti [DeF36] early asserted that a conditional has three, rather than two, truth- 
values: If the condition B is true, then "A given B" is true or false depending on the truth of A. 
But when B is false, De Finetti asserted that the conditional was neither true nor false, but 
instead required a third truth-value, which he unfortunately identified with "unknown" and 
therefore assigned a numerical value somewhere between 0 and 1. But a conditional with a 
false condition is not "unknown"; it is "inapplicable". For instance, if I am asked, "if you had 
military service, in which branch did you serve?" I don't answer "unknown". I answer "inap- 
plicable" because I haven't had military service. The question and 'its answer are not assigned 
a truth-value between 0 and 1; they are essentially ignored. The answer "unknown" would be 
appropriate by someone who thought I had military service but did not know in which branch I 
served. 

While it is not immediately obvious, the question of what operations are used to combine con- 
ditional propositions is essentially equivalent to the question of which of the three truth-values 
should be assigned to the nine combinations of the truth (T), falsity (F) or inapplicability (I) for 
two different conditionals. See [Cal93, p.7] for a proof. This approach was taken by A. Walker 
[Wal94] to determine those few operations on conditionals that satisfy natural requirements 
such as being commutative and idempotent. This approach was also employed in [Cal02] to 
provide careful motivations and a complete characterization of the 4 operations on conditionals 
a) - d) listed above and originally grouped together in [Cal87],  Three of these operations in 

the form of 3-valued truth tables were identified by B. Sobocinski [Sob52, Res69], but his 4th 

operation was very different from the operation d) in [Cal87]. Similarly, Adams easily identi- 

fied the negation operation for conditionals, but passed over the 4 iterated conditioning oper- 
ation employed here because he interprets a conditional as an implication instead of as a new 
object - an event or proposition in a given context. 

Recently, Adams reconsidered the issue of "embedded" or iterated conditionals [Ada98, p.268] 
and the so-called "import-export" principle which asserts that ((A | B) | C) = (A | B and C) for 
any expressions A, B and C. Operation d) is a restricted form of this principle, which can be 
used to reduce any iterated conditional to a simple conditional with Boolean components. For 
propositions A, B, C, D, E, and F, a more general form of the import-export law follows from 
operations a) - d): 
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[(A|B) | (C|D)] | (E|F) = (A|B) | [(C|D) (E|F)] (1.1) 

Using "import-export" Adams sites the following example as a counter example of the basic 
logical principle of modus ponens that A is always a logical consequence of B and (A|B). Not- 
ing that by import-export, ((HD | H) | D ) = (HD | HD), and that the latter is a logical neces- 
sity, Adams gives the example 

D and ((HD | H) | D) implies (HD | H), (1.2) 

Which, according to Adams, should be valid by modus ponens. For instance, interpreting D as 
"it is a dog" and H as "it is heavy (500 pounds)" modus ponens seems to fail because the impli- 
cation (HD | H), that "it is a heavy dog given that it is heavy" should not logically follow from 
D and "(HD | H) given D". Adams mentions three authors who each take a different direction 
here, one accepting "import-export", one accepting modus ponens, and one accepting both 
with reservations about modus ponens. 

But the difficulties raised by this example disappear when it is remembered that with modus 
ponens, it is not just "A" that is a logical consequence of "B and (A|B)", but rather "A and B" 
that is the logical consequence. And since conditionals are not logically monotonic, "A and B" 
does not necessarily imply "A" alone, as Adams has elsewhere shown. For conditionals, "A 
and B" may no longer imply "A" and may also have larger probability than "A" alone. 

Therefore, the logical implication of the left side of equation 1.2 is "D and (HD | H)", which by 
operation c) reduces to just D, and D is certainly a valid implication of the left side of 1.2. So 
the "paradox" arises because the notion that "B and A" must logically imply B is false for con- 
ditionals. 

For example, consider a single roll of a fair die with faces numbered 1 through 6. The condi- 
tional (2 | even) representing "2 comes up given an even number comes up" has conditional 
probability 1/3, and it surely logically implies itself by any intuitive concept of implication. 
Now conjoin the conditional (1 or 3 | < 5), representing "1 or 3 comes up given the roll is less 
than 5", with (2 | even) and the result by operation c) is (1 or 3 | not 5), which obviously does 
not logically imply (2 | even) by any intuitive concept of logical implication. Note also that (1 
or 3 | not 5) has conditional probability 2/5, which is larger than 1/3, the conditional probability 
of (2 | even). All of these situations have been analyzed in [Cal02]. Adams gives a similar 
example [Ada98, p. 273] that can be handled in the same way. 

Concerning embedded conditionals, Adams claims [Ada98, p. 274] that, "So far no one has 
come up with a pragmatics that corresponds to the truth-conditional or probabilistic semantics 
of the theories that they prose ...". However Adams has too quickly passed over the 4-opera- 
tion system of Boolean fractions (conditionals events) recounted here, and he has not yet 
examined the additional theory of deduction defined in terms of the operations on those condi- 
tionals. 

To repeat, most if not all of these so-called paradoxes of embedded conditionals and logical 
deduction arise from the unwarranted identification of the conditional (A|B) with the logical 
implication of A by B. Others arise by forgetting that conditionals are logically non-mono- 
tonic. However, when (A|B) is taken as a new object and deduction is defined in terms of the 
operations a) - d), these paradoxes disappear. Just as it is in general impossible to force Bool- 
ean propositions to carry the conditional probability, so too is it impossible to force condition- 
als to serve as implication relations. The latter must be separately defined in terms of, or at 
least consistent with, the chosen operations on conditionals. 

In Section 2.1 and 2.2 the essentials of the theory of deduction with uncertain conditionals are 
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recounted including some refinements such as Definition 2.2.4 of the "conjunction property". 
Section 2.3 provides three new illustrative examples of deduction with uncertain conditionals. 
Section 2.3.1 addresses the familiar question of what can be deduced by transitivity with con- 
ditionals. That is, what can be deduced from "A given B" and "B given C"? Section 2.3.2 ana- 
lyzes a set of three rather convoluted conditionals concerning an absent-minded coffee drinker. 
Two of the three conditionals are so-called non-indicative, also called subjunctive or counter- 
factual conditionals. Such conditionals seem to pose no additional difficulty for this theory of 
deduction. In Section 2.3.3 the absent-minded coffee drinker example is modified to make it a 
valid deduction in the two-valued Boolean logic. The implications with respect to various 
deductive relations are again determined. Section 3 addresses the issue of practical computa- 
tion of combinations of conditionals and deductions with conditionals. Section 3.1 illustrates 
the difficulties and complexities of pure Bayesian analysis when applied to the "transitivity 
example" of Section 2.3.1. Section 3.2 discusses the use of entropy in information processing 
as a reasonable and principled way to cut through complexity and solve for unknown probabil- 
ities and conditional probabilities. This idea has already been successfully implemented in the 
computer program SPIRIT developed at Hagen University by a team headed by W. Rodder. 
Section 3.3 addresses the question of the confidence that can be attached to probabilities deter- 
mined by the maximum entropy solution. In this regard the separate work of E.T. Jaynes, S. 
Amari, and A. Caticha are described, especially that of Jaynes, who proves an entropy concen- 
tration theorem that provides a statistical measure of the fraction of eligible probability distri- 
butions whose entropy falls below a specified critical value. 

2. Deduction with Uncertain Conditionals. Deduction for uncertain conditionals must be 
defined in terms of the operations a) - d) on conditionals listed in the introduction. For 
instance, if (A|B) and (C|D) are two conditionals, we may wish to define deduction of (C|D) by 
(A|B) to mean that the conjunction (A|B) (C|D) of the two conditionals should be equivalent to 
(A|B) as is the case with Boolean propositions. Recall that for Boolean propositions p implies 
q can be defined with the conjunction operation by the equation "p and q = p". Alternately, we 
could use the disjunction operation and define this same implication as "p or q = q". Still other 
ways exist such as "q or not p = 1 (true)". Surprisingly, in the realm of conditionals none of 
these definitions of implication are equivalent to one another! This has all been extensively 
developed in [Cal90, Cal91, Cal94] and especially [Cal02]. This development will be summa- 
rized and streamlined in sections 2.1 and 2.2. 

2.1 Deductive Relations. The expression "B < A" is used to signify "B implies A" because 
for Boolean propositions this implication is equivalent to saying that "the instances of B are a 
subset of the instances of A". This is also the appropriate interpretation in case that A and B 
are probabilistic events. Some readers may wish to mentally substitute the entailment arrow => 
for < to connote deduction. 

Definition 2.1.1. An implication or deductive relation, <, on conditionals is a reflexive and 
transitive relation on the set of conditionals. 

For instance, one such deductive relation is <bo: 

(A|B) <b0 (C|D)      if and only if    B = DandAB_CD (2.1.1) 

That is, conditional (A|B) implies conditional (C|D) with respect to this deductive relation if 
and only if the conditions B and D are equivalent propositions or events, and within this com- 
mon condition, proposition A implies proposition C. This is called Boolean deduction because 
it is just ordinary Boolean deduction when applied to conditionals with the same condition, and 
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a conditional can only imply another conditional provided they have equivalent conditions. 

Using conjunction (A) to define implication yields Conjunctive Implication (<A): 

(A|B)<A(C|D)      if & only if       (A|B) A (C|D) = (A|B) (2.1.2) 

For <A the conjunction of two or more conditionals always implies each of its components. 

Using disjunction (V) to define implication yields Disjunctive Implication (<v): 

(A|B)<V(C|D)   if & only if (A|B) V (C|D) = (C|D) (2.1.3) 

For <v the disjunction of two or more conditionals is always implied by each of the component 
conditionals. 

Applying the material conditional equation "q or not p = 1" to conditionals yields what is 
called Probabilistically Monotonic Implication (^pm): 

(A|B) <pm (C|D)    if & only if   (C|D) V (A|B)' = (H | D V B) (2.1.4) 

For <pm any conditional (C|D) implied by (A|B) has conditional probability no less than 
P(A|B). Here, the universal proposition is denoted "1" and the universal event is fl 

In [Cal91, Cal02] the defining equations on the right side of the definitions (2.1.1 -2.1.4) have 
been reduced to Boolean deductive relations between the component Boolean propositions. 
For instance, 2.1.2 reduces to the two Boolean implications, (A V B' < C V D') and (B' < D'); 
2.1.3 reduces to (AB < CD) and (B < D); and 2.1.4 reduces to (A V B' < C V D') and (AB < 
CD). Thus between two conditionals (A|B) and (C|D) four elementary Boolean deductive rela- 
tions arise: B < D, AB < CD, A V B' < C V D' and B' < D'. What is implied by these implica- 
tion relations is applicability, truth, non-falsity and inapplicability respectively. They have 
been denoted <ap, <to <nf, and <jp respectively where "ap" means "applicable", "tr" means 
"truth"", "nf' means "non-falsity" and "ip" means "inapplicable". This leads to a hierarchy of 
deductive relations on conditionals as one, two, three or all four of these different Boolean 
relations are assumed necessary for a deductive relation (A|B) <x (C|D) to hold between two 
conditionals (A|B) and (C|D). See Figure 2.1. Actually, except for ^ all of these deductive 
relations can be defined in terms of just one or two of the four elementary ones because, for 
instance, the combined properties of <ap and <nf are equivalent to those of <mQ. Similarly, the 
combined properties of <a and <ip are equivalent to those of <mA. 
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ip 

0 

Figure 2.1 Hierarchy of Implications (Deductive Relations) 

for Conditionals 

Trivial Implications 
1 - Implication of Identity (<[) 

(a|b)<,(c|d)iff(a|b) = (c|d) 

0 - Universal Implication 

(a|b) <0 (c|d) for all (a|b) & (c|d) 

Two Elementaries Combined 

V - Disjunctive Implication (<v) 

(a|b) <v (c|d) iff b < d and ab < cd 

pm - Probabilistically Monotonic 
Implication; (<pm) 

(a|b) <pm (c|d) iff ab < cd and 

(aVb')<nf(cVd') 

A - Conjunctive Implication (<A) 

(a|b) <A (c|d) iff d < b and (a V b') <nf (c V d') 

ec - Implication of Equal Conditions (<ec) 

(a|b)<ec(c|d)iffb = d 

Elementary Implications 
tr - Implication of Truth (<a) 

(al^^trCc^iffab^cd 

nf - Implication of Non-Falsity (<nf) 

(a!b)<nf(c|d)iff(aVb')^„f(cVd') 

ap - Implication of Applicability (<ap) 

(a^b)<ap(c|d)iff b<d 

ip - Implication of Inapplicability (<ip) 

(a|b)<ip(c|d)iff d<b 

Three Elementaries Combined 

mV - (Probabilistically) Monotonic and 

Applicability Implication (<mo) 

mA - (Probabilistically) Monotonic and 

Inapplicability Implication (<mo) 

Four Elementaries Combined 

bo - Boolean Deduction (oB | fixed b) (<(,0) 

(a|b) <b0 (c|d) iff b = d and ab < cd 
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2.2 Deductively Closed Sets of Conditionals. Having defined the idea of a deductive relation 
on conditionals it is now possible to define the set of implications of a set of conditionals with 
respect to such a deductive relation. 

Definition 2.2.1. A subset fHoi conditionals is said to be a deductively closed set (DCS) with 
respect to a deductive relation <x if and only if i^has both of the following properties: 

If (A|B) e H and (C|D) £ H then (A|B) A (C|D) e tf,  and 

If (A|B) e ^ and (A|B) <x (C|D) then (C|D) E 9i 

A set of conditionals with the first property is said to have the conjunction property and a set of 
conditionals satisfying the second property is said to have the deduction property. 

The following theorem states that the intersection of two DCS's with respect to two different 
deductive relations is a DCS with respect to the deductive relation formed by combining the 
requirements of those two deductive relations. 

Theorem 2.2.2. Conjunction Theorem for Deductively Closed Sets with respect to two 
Deductive Relations. If ^ is a deductively closed set of conditionals with respect to a deduc- 
tive relation <x, and 9^ is a deductively closed set of conditionals with respect to a deductive 
relation <T then the intersection ^ n ty is a DCS, 54Uy, with respect to the combined deduc- 
tive relation <xny defined by: 

(A|B) ^ (C|D)   if and only if   (A|B) <x (C|D)   and  (A|B) <y (C|D). 

The proof is very straightforward including showing that ^^ is a deductive relation. How- 
ever, in general not all DCS's with respect to <xny are intersections of DCS's with respect to 
the component deductive relations <x and <y 

Definition 2.2.3 Deductive Implications of a set J of conditionals. If J is any subset of con- 
ditionals, ^4(J) will denote the smallest deductively closed subset with respect to <x that 
includes J. We say that ^(J) is the deductive extension of J with respect to <x, or that J gener- 
ates or implies ^4(J) with respect to <x. A DCS is principal if it is generated by a single condi- 
tional. 

Definition 2.2.4. Conjunction Property for Deductive relations. A deductive relation <x 

has the conjunction property if and only if 

(A|B) <x (C|D) and (A|B) <x (E|F) implies (A|B) <x (C|D) A (E|F). 

(Note: this is different from the conjunction property satisfied by a set of conditionals.) 

Theorem 2.2.5. Principal Deductively Closed Sets. With respect to any deductive relation 
<x having the conjunction property the deductively closed set generated by a single conditional 
(A|B) is the set of conditionals that subsume it with respect to the deductive relation. That is, 
^{(A|B)} = {(Y|Z): (A|B) <x (Y|Z)}. ^{(A|B)} will be denoted by *4(A|B). 

Proof of Theorem 2.2.5. 5^(A|B) has the conjunction property. For suppose that (C|D) and 
(E|F) are in *£(A|B). So (A|B) <x (C|D) and (A|B) <x (E|F). Therefore (A|B) <x (C|D)(E|F), by 
the conjunction property of <x. So (C|D)(E|F) e 5£(A|B). ^4(A|B) obviously also has the 
deduction property by the transitivity of any deductive relation <x. Therefore ^(A|B) is a 
DCS of conditionals. Clearly any DCS containing (A|B) must also include ^4(A|B). So 
54(A|B) is the smallest DCS containing (A|B). 
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Theorem 2.2.6. The four elementary deductive relations <ap, <ff, <nf, and <ip on conditionals 
and their combinations, have the conjunction property of Definition 2.2.4. 

Proof of Theorem 2.2.6. Suppose that (A|B) <ap (C|D) and (A|B) <ap (E|F). So B < D and B 
< F. So B < (D A F) < (D V F). Therefore (A|B) <ap (C|D) A (E|F) = (CDF' V D'EF V CDEF | 
D V F) because B < D V F. Suppose next that (A|B) <tt (C|D) and (A|B) <a (E|F). So AB < 
CD and AB < EF. Therefore (A|B) <a (C|D) A (E|F) because AB < (CD) A (EF) < (CDF' V 
D'EF V CDEF) A (D V F). Suppose next that (A|B) <nf (C|D) and (A|B) <nf (E|F). So (A V B') 
< (C V D') and (A V B') < (E V F'). Therefore (A|B) <nf (C|D) A (E|F) because (A VB')<(C 
V D') A (E V F) = (CD V D') A (EF V F) = (CDEF V D'EF V CDF') V D'F, which is just 
(CDF' V D'EF V CDEF) V (D V F)\ Fourthly, suppose that (A|B) <ip (C|D) and (A|B) <ip 

(E|F). So B' < D' and B' < F. Therefore (A|B) <ip (C|D) A (E|F) because B' < D' A F' = (D 
V F)\ Finally, Suppose that (A|B) <xny (C|D) and (A|B) <xny (E|F) where x and y are in {ap, tr, 
nf, ip}. So (A|B) <x (C|D) and (A|B) <y (C|D) and (A|B) <x (E|F) and (A|B) <y (E|F). There- 
fore (AjB) <x (C|D) and (A|B) <x (E|F) and so (A|B) <x (C|D) A (E|F). Similarly (A|B) 
(C|D) A (E|F). Therefore (A|B) <xny (C|D) A (E|F). 

< 

Corollary 2.2.7. If <x is one of the elementary deductive relations <ap, <,,, <nf, and <ip or a 
deductive relation combining two or more of these, then the DCS generated by (A|B) with 
respect to <x is ^(A|B) = {(Y|Z): (A|B) <x (Y|Z)}. 

Proof of Corollary 2.2.7. The proof follows immediately from Theorems 2.2.5 and 2.2.6. 

These results allow the principal DCS's with respect the four elementary deductive relations 
and their combinations to be explicitly expressed in terms of Boolean relations. See fCal02] 
for details. For instance, ^4p(A|B) = {(Y)Z): Y any event or proposition and Z any event or 
proposition with B < Zj = {(Y | B V Z): Y and Z any events or propositions}. For the elemen- 
tary deductive relations these solutions are 

i*4p(A|B) = {(Y | B V Z): any events or propositions Y and Z in &} (2.2.1) 

#k(A|B) = { (AB V Y | AB V Z): any events or propositions Y and Z in $} (2.2.2) 

^f(A|B) = { (AB V B' V Y | Z): any Y, Z in $} (2.2.3) 

%(a|b) = {(Y | BZ): any Y, Z in ffi} (2.2.4) 

The following result allows the principal DCS's of the deductive relations formed by combin- 
ing two or more of the elementary deductive relations to be expressed as an intersection of 
principal DCS's of the elementary deductive relations. This result does not extend to DCS's 
generated by a set of conditionals. 

Theorem 2.2.8. The principal DCS ^ny(A|B) of a single conditional (AjB) with respect to a 
combination deductive relation <xr,y is the intersection of the DCS's with respect to the compo- 
nent deductive relations <x and <y. That is, 54ny(A|B) = i^(A|B) n ^(A|B). 

Proof of Theorem 2.2.9. ^ny(A|B) = {(C|D): (A|B) <xny (C|D)} = {(C|D): (A|B) <x (C|D) 
and (A|B) <y (C|D)} = ^(A|B) n ^(A|B). 
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Using the formulas for the principal DCS's with respect to the elementary deductive relations, 
the principal DCS's with respect to the combined deductive relations have been calculated in 
[Cal02]. For the deductive relations mentioned above, the principal DCS's are: 

i*C(A|B) = { (AB V Y | B V Z): any Y, Z in SB} (2.2.5) 

^m(A|B) = { (AB V B' V Y | AB V Z): any Y, Z in 68} (2.2.6) 

.^A(A|B) = { (AB'V Y | BZ): any Y, Z in &} (2.2.7) 

Having described the principal DCS's of the elementary deductive relations and their combina- 
tion deductive relations, these results can be used to describe the DCS's of a set of conditionals 
with respect to these deductive relations. 

For Boolean deduction, the implications of a finite set of propositions or events is simply the 
implications of the single proposition or event formed by conjoining the members of that initial 
finite set of conditionals. One of the counter-intuitive features of deduction with a set condi- 
tionals is the necessity of considering the deductive implications of all possible conjunctions of 
the members of that initial set of conditionals. 

Definition 2.2.10. Conjunctive Closure of a Set of Conditionals. If J is a set of conditionals 
then the conjunctive closure C(J) of J is the set of all conjunctions of any finite subset of J. 

Theorem 2.2.11. Deduction Theorem. For all the elementary deductive relations <x and 
their combinations, except for <tt and <v, the DCS HJJ) with respect to <x of a set J of condi- 
tionals is the set of all conditionals implied with respect to <x by some member of the conjunc- 
tive closure C(J) of J. That is, 

5/(J)   = { (Y|Z): (A|B) <x (Y|Z), (A|B) e C(I)} 

For a proof see subsection 3.4.3 of [Cal02]. 

Corollary 2.2.12. Under the hypotheses of the Deduction Theorem, it follows from Theorem 
2.2.5. (Principal Deductively Closed Sets) that 

^(J)   = U _^(A|B) 
(A|B) eC(J) 

That is, the deductively closed set with respect to <x generated by a subset J of conditionals is 
the set of all conditionals implied with respect to <x by some member of the conjunctive clo- 
sure C(J) of J. 

For most deductive relations <x it is necessary in general to first determine the conjunctive clo- 
sure C(J) of a finite set of conditionals J in order to determine the DCS ^4(J) of J. However for 
the non-falsity, inapplicability and conjunctive deductive relations, that is for x e {nf, ip, A}, the 
DCS of J is 5£(J) = .?4(A|B), where (A|B) is the single conditional formed by conjoining all the 
conditionals in J. 
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Corollary 2.2.13. With respect to the three deductive relations <nf, <ip, and <A the DCS cf a 
finite set of conditionals J is principal and is generated by the single conditional formed by 
conjoining all the conditionals in J. 

Proof of Corollary 2.2.13. Let x e {nf, ip, A}, and suppose (A|B) is the conjunction of all the 
conditionals in the set J of conditionals. Then ,^(J) = 5^(A|B) because with respect to <x, 
(A|B) <x (Y|Z) for all (Y|Z) in C(J). This follows from the fact, which is easily checked, that 
for these deductive relations the conjunction of two conditionals always implies each of the 
component conditionals. 

2.3 Examples of Deduction with Uncertain Conditionals. In [Cal02] the implications of the 
three well known "penguin postulates" have been completely described with respect to the ele- 
mentary deductive relations and their combinations. In this section two more examples will be 
given. First the implications of the set J of the two conditionals {(A|B), (B|C)} will be deter- 
mined. Of interest is the conditional (A|C), which is easily true when the initial two condition- 
als are certainties, but may be false when one or the other is uncertain. We are often interested 
in chaining deductions and inferences in this way. What are the implications and inferences to 
be made from knowing "A given B" and "B given C", allowing for the lack of certainty of 
these conditionals? 

2.3.1 Transitivity Example. Consider the set J consisting of two uncertain conditionals (A|B) 
and (B|C). Then the conjunctive closure C(J) = {(A|B), (B|C), (A|B)(B|C)} = {(A|B), (B|C), 
(AB | B V C)}. For x 6 (nf, ip, A}, by Theorem 2.2.8 on principal DCS's, the DCS generated by 
J is *£(J) = 5£(AB | B V C). So using equations 2.2.3, 2.2.4, and 2.2.7, 

#rp(j) = { (Y | (B V C) Z ): any Y, Z in ,9?} 

^J) = { (AB V B'C V Y | Z): any Y,Zin £} 

9QJ) = { (AB V Y | (B V C) Z): any Y, Z in £8} 

Notice that (A|C) 6 ^t<J) by setting Y = AB' and Z = C. In that case (AB V B'C V Y | Z) = 
(AB V AB' V B'C | C) = (A V B'C | C) = (A|C). Thus with respect to the non-falsity deduc- 
tive relation <nf, the conditional (A|C), as expected, is implied by (A|B) and (B|C). When (A|B) 
and (B|C) are non-false then so is (A|C). XfCO is the set of all conditionals whose conclusion 
includes the truth of (A|B) and also the inapplicability of both (A|B) and (B|C). By similar 
arguments (A|C) is in 9{p(J) and also in 9{J1). 

For the elementary deductive relations <x or some combination of them except for <„ and <v, 
by Corollary 2.2.12 the DCS generated by J is j^(J) = ^(A|B) u ^(B|C) u ^(AB | B V C). 

Now let x = pm. That is, consider the deductions of J with respect to the probabilistically 
monotonic deductive relation <pm Since (AB | B V C) <pm (A|B), therefore -%m(AB | B V C) 2 
^m(A|B). Thus, ^m(J) = ^m(B|C) U ^m(AB | B V C). So by equation 2.2.6 %JJ) = {BC v 
C V Y | BC V Z): any Y, Z in $} u {AB v B'C V Z | AB v Z): any Y, Z in £}. Note that 
(A|C) is not necessarily a member of ^m(J). 

Furthermore, since <pm is probabilistically monotonic, all the conditionals in ^m(B\C) = {BC 
V C V Y | BC V Z): any Y, Z in 5?} have conditional probability no less than P(B|C), and all 
the conditionals in J%m(AB | B V C) = {AB V B'C V Z | AB V Z): any Y, Z in 68} have condi- 
tional probability no less than P(AB | B V C). 



38 Workshop "Conditionals, Information, and Inference" 

2.3.2 Absent-minded Coffee Drinker Example. The second example by H. Pospesel [Pos71, 
p.27, #78] is a typical inference problem called the "absent-minded coffee drinker": "Since 
my spoon is dry I must not have sugared my coffee, because the spoon would be wet if I had 
stirred the coffee, and I wouldn't have stirred it unless I had put sugar in it." 

This is not a valid argument in the 2-valued logic, but there are still deductions and inferences 
to be drawn from these conditional premises. Let D denote "my spoon is dry"; let G denote "I 
sugared my coffee"; and let R denote "I stirred my coffee". Translating into this terminology 
the set of premises is J = {D, (D'|R), (R'|G')}. Therefore the conjunctive closure C(J) = {D, 
(D'|R), (R'|G'), D(D'|R), D(R'|G'), (D'|R)(R'|G'), D(D'|R)(R'|G')}. Using the operations on 
conditionals 1.1-1.4 C(J) becomes {D, (D'|R), (R'|G'), DR\ DG V DR'G', (D'RG V R'G' | R 
V G'), DR'}. So according to the Corollary 2.2.12, for any of the elementary deductive rela- 
tions <x or their combinations, except for <ff and <v, ^4(J) = ^(D) u ^(D'|R) u 54(R'|G') u 
54(DR') u %(DG V DR'G') u 5£(D'RG V R'G' | R V G'). 

Now this union can be simplified because some of these DCS's are included in the others. For 
instance, since all of these deductive relations satisfy DR' < D, therefore ^(DR') D ^(D). 
Similarly, DR' < DG V DR' = D(G V R') = D(G V R'G') = DG V DR'G'. So i^(DR') a 
^(DG V DR'G'). Thus, ^(J) = ^(D'|R) u ^(R'|G') u 5£(DR') u ^(D'RG V R'G'| RvG'). 

For x = ip, nf or A, by Corollary 2.2.13, ^(J) = i^(D(D'|R)(R'|G')) = X(DR'). Therefore 

54f(J) = ^.rCDR') = l(DR' V Y | Z): any Y, Z in £8}. That is, the implications of J when its con- 
ditionals are regarded as non-false, are all those conditionals with any condition and whose 
conclusion includes the event DR', that "my spoon is dry" and "I did not stir my coffee". 
Notice that G', "I did not sugar my coffee", is not an implication of J with respect to the non- 
falsity deductive relation, and neither is it a valid consequence of J in the 2-valued Boolean 
logic. In the 2-valued logic the implications of J are the universally conditioned events that 
include DR', that the spoon is dry and my coffee is not stirred. But the implications with 
respect to the "non-falsity" deductive relation <nf include all those with any other condition 
attached. 

Similarly, by Corollary 2.2.13, ^(J) - J&( DR') - {(DR' V Y | Z): any Y, Z in $} = ?(lt{J), 
and so in this case the implications with respect to <A are equal to the implications with respect 
to <nf. 

Turning to <pm, there is an additional simplification. Since DR' <pm (D'|R), therefore 
.^pm(DR') 3 ^pm(D'|R). So ,%m(J) = ^m(R'|G') u ^m(DR') u #pm(D'RG V R'G' | R V G'). 

By equation 2.2.6, i%m(R'|G') = {(R'G' V G V Y | R'G' V Z): any Y, Z in $}, and %JDR') = 

{(DR' V Y | DR' V Z): any Y, Z in $}, and ^m(D'RG V R'G' | R V G') = {(D'RG V R'G' V 
R'G V Y | D'RG V R'G' V Z): any Y, Z in $} = {(D'RG V R' V Y | D'RG V R'G' V Z): any Y, 
Zin£B}. 

So the set of implications with respect to <pm of J = {D, (D' | R), (R'|G')} is the union of three 
sets of conditionals. ^m(R'|G') is the set of all conditionals whose condition includes my not 
stirring nor sugaring my coffee and whose conclusion includes sugaring my coffee or not sug- 
aring nor stirring it. ^ipm(DR') is the set of all conditionals whose condition and conclusion 
include my not stirring my coffee and my spoon being dry. i^m(D'RG V R'G' | R V G') is all 
conditionals whose condition includes my stirring and sugaring my coffee or not sugaring my 
coffee and whose conclusion includes my stirring and sugaring my coffee and wetting my 
spoon or neither stirring nor sugaring my coffee. 
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All the conditionals in ^m(R'|G') have conditional probability no less than P(R'jG'). These in 
5^m(DR') have conditional probability no less than P(DR'), and those conditionals in 
#pm(D'RG 0 R'G' | R 0 G') have conditional probability no less than P(D'RG V R'G' | RVG'). 

If the spoon is observed to be dry, then D=l. So #pm(DR') = {(R' V Y | R' V Z): any Y, Z in 68} 
and #pm(D'RG V R'G' | R V G') = {(R' V Y | R'G' V Z): any Y, Z in 68}, and the latter set of 
conditionals includes those of ?{pm(DR') by setting Z = R'G V W, where W is any proposition 

or event in 68. Furthermore, the set #pm(R'|G') = {(R'G' V G V Y | R'G' V Z): any Y, Z in 68} 

= {(R' V G V Y | R'G' V Z): any Y, Z in 68} is also a subset of {(R' V Y | R'G' V Z): any Y, Z 
in 68} by setting Y = G V W, where W is any proposition or event in 68. 

So if my spoon is observed to be dry (D=l), then ^JJ) = {(R'VY | R'G' V Z): any Y, Z in 68}. 
Thus the only conditionals implied with respect to <pm by J = {D, (D'| R), (R'|G')}= {1, (0|R), 

(R'|G')} are {(R' V Y | R'G' V Z): any Y, Z in 68}, namely those whose condition includes the 
non-stirring and non-sugaring of my coffee and whose conclusion includes the non-stirring of 
my coffee. 

Finally consider the implications with respect to the deductive relation <bo. From !tfx(T) = 
iffx(D'|R) E #"X(R'|G') £ #X(DR') £ #"X(D'RG V R'G' | R V G') it follows that #"bo(J) = 
flUD'IR) E #"bo(R'|G') E ^b0(DR') £ ^b0(D'RG V R'G' | R V G') = {(D'R V Y | R): and Y in 
68} E {(R'G' V Y | G'): any Y in 58} £ {(DR' V Y): any Y in 68} E {(D'RG~ V R'G' V Y | R 
VG'): any Yin 68}. 

2.3.3. Absent-minded Coffee Drinker Revisited. It interesting to see what happens with this 
example when the conditional (R'|G') in J is replaced by (R|G). Instead of saying "I wouldn't 
have stirred my coffee unless I had put sugar in it" suppose it was "if I sugared my coffee then 
I stirred it." Thus J = {D, (D'| R), (R|G)}. 

In the Boolean 2-valued logic, the implications of J are those of the conjunction D(D'|R)(R|G) 
where the conditionals are equated to their material conditionals and have a conjunction D(D' 
V R')(R V G') = DR'G'. 

More generally the conjunctive closure of J is C(J) = {D, (D'|R), (R|G), D(D'|R), D(R|G), 
(D'|R)(R|G), D(D'|R)(R|G)} = {D, (D'|R), (R|G), DR', DG' V DRG, (D'RG' V D'RG | R V G), 
DR'G'}. Obviously, the propositions D and DR' are implications with respect to all deductive 
relations of DR'G', and so for all deductive relations <x their implications are included in J{X(J) 
= 7/x(D'|R) E #;(R|G) E #"X(DG' V DRG) E #"X(D'R | R V G) E #X(DR'G'). Furthermore, 
(DC V DRG) = D(G'V RG) = D(G' V R) = D(R'G' V R) = DR'G' V R) is also an implication 
of DR'G'. So dropping 7fx(DG' V DRG) from the union, 7fK(J) = #"X(D'|R) E ^(R|G) E 
#X(D'R | R V G) E #X(DR'G'). 

Note that the proposition DR'G' (having a dry spoon, unstirred coffee, and unsugared coffee) 
which is the conjunction of the three original conditionals of J = {D, (D' | R), (R|G)}, is an 
implication with respect to all these deductive relations. It is a logical consequence of J. Fur- 
thermore, by rearranging the conditioning, its probability P(DR'G') = P(D)P(R'G'|D) = 
P(D)P((G'|R') | D)P(R'|D) = P(D)P(G'|DR')P(R'|D). This latter product has easily estimated 
conditionals probabilities. P(D) = 1 by observation, and both P(G'|DR') and P(R'|D) are also 
close to or equal to 1. This is one way the reasoning can proceed even though the initial phras- 
ing was in terms of conditionals whose probabilities are not so easily estimated. 
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In addition, (D'R | R V G) <pra (D'|R) because (D'R)(R V G) < (D'R) and D'R V R'G' < D'R 
V R*. Thus ^pm(J) = tfpm(R|G) E ^"Fm(D'R | R V G) E #pm(DR'G'). So ^pm(J) = {(RG VG'V 
Y | RG V Z): any Y, Z in SB} E {(D'R V R'G' V Y | D'R V Z): any Y, Z in SB} E {(DR'G' V Y 
| DR'G' V Z): any Y, Z in SB}. Furthermore, the conditionals in #"pm(R|G) all have conditional 
probability no less than P(R|G), and similarly for the conditionals in #^m(D'R | R V G) and in 

#pm(DR'G'). 

Turning to the non-falsity deductive relation, because DR'G' < D'R V R'G' therefore DR'G' 
<nf (D'R | R V G), and so #"nf<D'R | R V G) c fl^DR'G'). Furthermore, because DR'G' < R V 
R'G' = R V G' therefore DR'G' <nf (R|G) and so #"nf(R|G) c #nf<DR'G'). So the implications 

of J with respect to <nf are .7£f{J) = {(DR'G' V Y | Z): any Y, Z in S3}, namely any conditionals 
whose conclusion includes DR'G'. 

Finally, with respect to <bo from #X(J) = #X(D'|R) E #"X(R|G) E ^(D'R|RVG)E #"X(DR'G') 
it follows that #bo(J) = #"b0(D'|R) E #"b0(R|G) E Jfbo(D'R I R V G) E ^bo(DR'G') = {(D'R V Y 
| R): any Y in SB} E {(RG V Y | G): any Y in SB} E {(D'R V Y | R V G): any Y in 6B} E 
{(DR'G' V Y): any Y in SB}. So the implications with respect to <bo include J£0(D'|R), all 
those conditionals with the condition that I stirred my coffee (R) and with a conclusion that 
includes a non-dry spoon and stirred coffee (D'R). ^/"b0(R|G) is all conditionals with sugared 
coffee (G) as condition and with a conclusion that includes RG, stirred and sugared coffee. 
7fbo(D'R | R V G) is all conditionals with conclusions that include D'R and with condition R V 
G, of either stirred coffee or sugared coffee. ^40(DR'G') is simply the set of all (universally 
unconditioned) events that include DR'G', a dry spoon and unstirred, unsugared coffee. All of 
these conditionals have probabilities no less than the corresponding conditional that generates 
them. 

3. Computations with Conditionals. While the preceding sections provide an adequate theo- 
retical basis for calculating and reasoning with conditional propositions or conditional events, 
the problem of the complexity of information is no less daunting. Indeed, even without the 
added computational burden of operating with explicit conditionals, just operating with Bool- 
ean expressions in practical situations with, say, a dozen variables, is already too complex for 
practical pure Bayesian analysis. The reason for this is that in most situations the available 
information is insufficient to determine a single probability distribution that satisfies the 
known constraints of the situation. Various possibilities concerning unknown dependences 
between subsets of variables result in complicated solutions to relatively simple problems. 

3.1 Pure Bayesian Analysis. For example, consider again the transitivity problem of Section 
2.3.1. If "A given B" and "B given C" are both certain, then it follows that "A given C" is also 
a certainty. But if they are not certain, then by pure Bayesian analysis, P(A|C) can be zero no 
matter how high are the conditional probabilities of (A|B) and (B|C). This happens because 
P(B|C) and P(A|B) can be almost 1 while P(A| BC) is zero, and it is the latter probability that 
appears in the Bayesian solution: P(A|C) = P(AB or AB' | C) = P(AB|C) + P(AB'|C) = 
P(ABC)/P(C) + P(AB'C)/P(C) = P(ABC | BC) P(BC|C) + P(AB'C | B'C) P(B'C|C) = 
P(A|BC)P(B|C) + P(A|B'C)P(B'|C). Without knowing anything about P(A|BC) or P(A|B'C), 
nothing more can be said about P(A|C). 
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3,2 Choosing a Bayesian Solution Using Maximum Information Entropy. Continuing the 
example of Section 3.1, knowing that C is true might dramatically change P(A|B) up or down. 
But if nothing is known one way or the other, the choice of the maximum information entropy 
distribution assumes that P(A|BC) = P(A|B). This latter equation is called the conditional 
independence of A and C given B. It can also be expressed as P(AC|B) = P(A|B)P(C|B) or as 
P(C|AB) = P(C|B). Using this principle P(A|C) = P(A|B)P(B|C) + P(A|B'C)P(B'|C). So if 
P(A|B) and P(B|C) are 0.9 and 0.8 respectively, then P(A|C) is at least 0.72. Additionally, 
since nothing is known one way or the other about the occurrence of A when B is false and C is 
true, this principle of "maximum indifference" implies that P(A|B'C) should be taken to be lA. 
So the term P(A|B'C)P(B'|C) contributes (1/2)P(B'|C) = (1/2)(1 - 0.8) = 0.1 to P(A|C) bring- 
ing the total to 0.82. 

In affect the principle of maximum information entropy chooses that probability distribution P 
that assumes conditional independence of any two variables that are not explicitly known to 
have some dependence under the condition. This greatly simplifies computations and often 
allows situations of several dozen variables to be rapidly analyzed as long as the clusters of 
dependent variables are not too large and not too numerous. The maximum entropy solution is 
always one of the possible Bayesian solutions of the situation. If there is just one Bayesian 
solution, then the two solutions will always agree. 

It is a remarkable fact that such a function as the entropy function exists, and it is now clear 
that it has wide application to information processing under uncertainty. If the n outcomes of 
some experiment are to be assigned probabilities pj for i=l to n subject to some set of con- 
straints, then the distribution of probabilities that assumes conditional independence unless 
dependence is explicitly known is the one that maximizes the entropy function 

H(pi,p2,P3> •••>Pn) = -£  Pi log Pj 
i=] 

and also satisfies the known constraints.   If there is an a priori distribution qj, q-,, q-, ..., qn 

then H is given by 

n 

H(Pi, p2, P3.---.Pn.qi. 02. 03, ...,0n) = - ^  Pi log (p/0i) 
i=l 

This allows maximum entropy updates when additional information is available.   See J. E. 
Shore [Sho80] for a derivation. 

W. Rodder [R6d96, RodOO] and his colleagues at Fern University in Hagen are continuing to 
develop a very impressive interactive computer program SPIRIT that implements this practical 
approach to the computation of propositions and conditional propositions and their probabili- 
ties. Starting with an initially defined set of variables and their values, the user can input state- 
ments and conditionals statements about these variables taking various values, and can also 
assign conditional probabilities to them. The utility of having a variable take one of its values 
can also be incorporated. 
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3,3 Confidence in Maximum Entropy Solutions. While the maximum entropy solution pro- 
vides the most plausible or "most likely" probability distribution for a situation among all of 
the Bayesian solutions, it does not immediately provide a means for estimating how much con- 
fidence to attach to that solution. This issue has been taken up by E. Jaynes [Jay79], S. Amari 
[Ama85]], and A. Caticha [CatOO]. 

Jaynes puts the matter as follows: "Granted that the distribution of maximum entropy has a 
favored status, in exactly what sense, and how strongly, are alternative distributions of lower 
entropy ruled out?" He proves an entropy "concentration theorem" in the context of an gener- 
alized experiment of N independent trials each having n possible results and satisfying a set of 
m (< n) linearly independent, linear constraints on the observed frequencies of the experiment. 
Jaynes shows that in the limit as the number N of trials approaches infinity, the fraction F of 
probability distributions satisfying the m constraints and whose entropy H differs from the 

maximum by no more than DH is given by the Chi-square distribution Xk~ with k = n - m -1 
degrees of freedom as 

2N(DH) = 3(k
2(F) 

That is, the critical, threshold entropy value Ha for which only the fraction Q of the probability 
distributions that satisfy the m constraints have smaller entropy is given by 

Ha=Hmax-Xk
2(l-G)/2N. 

For N = 1000 independent trials of tossing a 6-sided die and with a significance level a = 0.05 
and degrees of freedom k = 6 - 1 - 1 = 4, 95% of the eligible probability distributions have 
entropy no less than B.a = Hmax - 9.49 / 2N = Hmax - 0.0047. Hmax is on the order of 1.7918 for 
a fair die and 1.6136 for a die with average die value of 4.5 instead of 3.5. Letting a = 0.005 it 
follows that 99.5% of the eligible distributions will have entropy no less than Hmax - 14.9 / 
2000 = Hmax-0.00745. 

Clearly eligible distributions that significantly deviate in entropy from the maximum value are 
very rare. However this result does not directly answer the question of how much confidence 
to have in the individual probabilities associated with distributions having maximum or almost 
maximum entropy. That is, can a probability distribution with close to maximum entropy 
assign probabilities that are significantly different from the probabilities of the maximum 
entropy distribution? 

For instance, a 6-sided die having two faces with probabilities 1/12 and 1/4 respectively and 
four faces each having 1/6 probability has entropy 0.0436 less than the maximum of 1.7918 for 
a fair die. So for N=1000 independent trials and a significance level of a = 0.05 such a distri- 
bution would differ from the maximum entropy value for a fair die by considerably more than 
0.0047. However for N=100, DH = 9.49/200 - 0.047, which is large enough to include such a 
distribution. 

Furthermore, how does the confidence in the probabilities determined by a maximum entropy 
solution depend upon the amount of under-specification of the situation that produced that 
solution? Surely a maximum entropy distribution that relies upon a great deal of ignorance 
about a situation offers less confidence about the probabilities determined than does a maxi- 
mum entropy solution that is based upon a minimum of ignorance about the situation. Put 
another way, confidence about the maximum entropy distribution should be higher when con- 
ditional independencies are positively known than when they are merely provisionally 
assumed. 
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Amari [Ama85] takes up these issues in the context of differential geometry. Under-specifica • 
tion of information gives rise to a manifold of possible probability distributions. A Rieman- 
nian metric on these distributions early introduced by C. R. Rao [Rao45] allows a very general 
approach to quantifying the distance between distributions. This development provides a very 
general approach to these problems of multiple possible distributions, but so far the results 
don't seem to directly apply to the issue of the confidence to be attached to the individual prob- 
abilities dictated by a maximum entropy distribution. Unfortunately Amari offers no numeri- 
cal example to illustrate how these results might be applied to allow a confidence measure to 
be put upon the probabilities associated with distributions having maximum or close to maxi- 
mum entropy. 

Caticha [CatOO] frames the question along the same lines as Jaynes: "Once one accepts that the 
maximum entropy distribution is to be preferred over all others, the question is to what extent 
are distributions with lower entropy supposed to be ruled out?" Using a parameterized family 
of distributions Caticha shows how this question can be rephrased as another maximum 
entropy problem, but he too offers no simple illustrative example of how his results can be 
applied to the question of how much confidence to have in any one probability value associ- 
ated with the maximum entropy distribution. 

What seems to be needed is a way to solve for the probabilities of specified outcomes in terms 
of entropies equal to or close to the maximum entropy. If 95% of the eligible probability distri- 
butions have entropy H no less than Hmax - AH, then what confidence limits are implied for the 
individual probabilities of those distributions? 

4. iSummary. In order to adequately represent and manipulate explicitly conditional state- 
ments such as "A given B" the familiar Boolean algebra of propositions or events must be 
extended to ordered pairs of such propositions or events. This is quite analogous to the require- 
ment to extend integers to order pairs in order to adequately represent fractions and allow divi- 
sion. The resulting system of Boolean fractions includes the original propositions and also 
allows the non-trivial assignment of conditional probabilities to these Boolean fractions. Bool- 
ean fractions are truth functional in the sense that their truth status is completely determined by 
the truth or falsity of the two Boolean components of the fraction. But since there are two 
components, the truth status of a Boolean fraction has three possibilities - one when the condi- 
tion (denominator) is false and two more when the denominator is true. Just as all integer frac- 
tions with a zero denominator are "undefined", so too are all Boolean fractions with a false 
condition undefined or "inapplicable". When the condition is true then the truth status of a 
Boolean fraction is determined by the truth of the numerator. The four extended operations 
(or, and, not, and given) on the Boolean fractions reduce to ordinary Boolean operations when 
the denominators are equivalent. Just as with integer fractions, the system of Boolean fractions 
has some new properties but loses others that are true in the Boolean algebra of propositions or 
events. 

A conditional statement is not an implication or a deduction; it is rather a statement in a given 
context. Deduction of one conditional by another can still be defined in terms of the 
(extended) operations, as is often done in Boolean algebra. Due to the two components of a 
conditional there is a question of what is being implied when one conditional implies another. 
It turns out that several plausible implications between conditionals can be reduced to ordinary 
implications between the Boolean components of the two conditionals. The applicability, 
truth, non-falsity or inapplicability of one conditional can imply the corresponding property in 
the second conditional.  Any two or more of these four elementary implications can be com- 
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bined to form a more stringent implication. With respect to any one of these implications, a set 
of conditionals will generally imply a larger set, and it is now possible to compute the set of all 
deductions generated by some initial set of conditionals, as illustrated by three examples in this 
paper. 

While computations can be done in principle, in practice the complexity of partial and uncer- 
tain conditional information precludes the possibility of solving for all possible probability dis- 
tributions that satisfy the partial constraints. What is feasible and already successfully 
implemented in the program SPIRIT is to compute the distribution with maximum information 
entropy. However, the amount of confidence that can be associated with the probabilities 
assigned by this "most likely", maximum entropy distribution is still an open question. 
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